Dear reader,

Welcome to the autumn newsletter, designed to keep you informed about all the PEG group latest news. Our aim is to advise you of future event and report on projects and previous events as well as to present you our consultancy capabilities. I hope you find this letter of interest and we would welcome the opportunity to discuss how PEG can support your business.

Yours Sincerely,

Marc Lambert
C.E.O

Inaugural ceremony of the first Chadian cement plant
New Projects
The role of consultants in cement grinding projects
Maintenance scheduling and spare parts in cement plants
PEG establishes a new partnership with Green Voltage
PEG Aviation new deal with British Airways
Company News
PEG Vacancies
Inaugural ceremony of the first Chadian cement plant

Chadian President Idriss Déby Itno, inaugurated the Baaré Cement Plant on February 16th, located 400km of the capital city N’Djamena. This construction project, financed by China is worth 70 million Euros, lasted 30 months and mobilized 300 Chinese.

This first Chadian cement plant has a production capacity of 200’000 tons of Portland cement 32,5 and 42,5 per year -or 700 tons per day- which is solely to be used to supply the domestic market.

As explained by the President, it has been built to solve the problem of social housing in Chad. However, this falls short of consumption needs as Chad estimated requirements are of 700’000 tons per annum.

PEG S.A. formed a consortium group with Consulting Africa of Chad, where we contributed to this project by providing consultancy and engineering services for the complete construction of the plant. The general contracting company was CAMCE.

After the achievement of this project PEG hopes to develop further its presence in this country. It has been decided to set up PEG Chad in partnership with Consulting Africa.

Our photo report

Welcoming ceremony for the President

The Chadian President during the ribbon-cutting ceremony

The PEG project team in front of the plant
Since our last newsletter, PEG Group has signed 25 new contracts:

Saudi Arabia

9. Evaluation of the geological study, pre-project study, preparation of tender documents, evaluation of proposals and contract negotiations and supervision of the contractors engineering for a greenfield production line of 6'000 tpd clinker on a EPC turnkey contracting basis.

10. Site mission and preliminary audit of two limestone deposits foreseen for white cement production capacity plant of 500’000 tpa and for grey cement plant production capacity of 2 millions tpa.

United Kingdom

1. Contract for providing engine docks for maintenance, repair and overhaul of narrow body aircraft engines for British Airways.

Switzerland

4. Contract for the draw up of tender documents for the installation of advanced road signs on the highway access to the commercial center of Balexert.

5. Replacement of batteries and firebreaks in the technical premises of the tunnels around Geneva (area of Plan les Ouates).

6. For the Geneva Airport extension project, PEG carries out the studies and supervises works regarding:
 - the lighting systems for a LINK and INNER taxiway
 - the creation of a parking lighting guidance system

Venezuela

3. Expert review report as well as technical assessment of fixed assets.

Russia

2. Consultancy/Participation in the discussion of the concept of the raw material (clay) crushing & storage systems upgrade at a Russian cement plant.

Turkey

7. Assistance with tendering and overview evaluation for a roller press system for a grinding capacity increase project.

Nigeria

8. Commercial and technical Due Diligence.
New projects

Philippines

PEG SEA has signed contracts for:
14. RDF feeding systems
15. Rebar Scanning at RM silo
16. Coal Mill ID Fan Foundation Investigation
17. Preheater assessment and investigation
18. Coal storage structural, assessment and as-built
19. RM Silo Bottom slab reinforcement
20. VRM shutdown works
21. Clinker/material storage roofing replacement
22. Coal transport
23. LST Additive conveying system - Engineering work
24. Design and Execution of new AFR preparation facility
25. Hoist Support Foundation

India

11. Offer for semi turn-key execution (scope for supply of equipment) of standby clinker transport conveyor.
12. Kiln line operational assessment, optimization and debottlenecking for a capacity of 4'800 tpd clinker.

Singapore

13. Technical assessment and optimization study for the upgrade of the cement import terminal from 4M tons cement per annum to 4.8M tons.

Full PEG references in Cement, Infrastructure and Environment are available upon request or can be downloaded from our website www.pegeng.ch
Role of Consultants in solving plant efficiency problems through better grinding

When a new plant is built and commissioned, there is an expectation from the client that all systems will work harmoniously together as they were specified to do. However, in nearly all cases, the role for outside knowledge and expertise is essential during all stages of a project. From initial concept to the commissioning and final hand over, a consultant provides a client with different perspectives and knowledge, as well as an expert guiding hand to bring the project to a successful conclusion. This article focuses on the role of consultants in cement grinding projects, and gives two case studies of how as consultants, PEG S.A. has improved the performance of these projects.

Background:

For every ton of finished product produced, around 3 tons of materials including raw materials, fuel, clinker, and additives must be ground. Grinding is therefore an essential process within the cement process that needs to be absolutely correct in order for the plant to function efficiently. Incorrect installation of any part of the aforementioned materials to be ground can result in higher energy costs, loss of production or in the worst cases a plant stoppage.

Grinding operation consumes about 60% of total power in a cement plants, raw material grinding takes more than 30%, while a coal mill used in a cement plant consumes 3%, cement grinding about 40%. So choosing the right grinding mills in a cement plant is very important.

Raw material Crushing: Case Study

Recently, a new 5000tpd plant was installed in one of the CIS countries and promptly commissioned by a well known cement plant manufacturer.

On commissioning, it became clear that the plant was unable to reach its nominal production capacity.

During the design phase, the plant was specified with little or no regard to the condition of the raw clay. The moist and sticky nature of the clay was identified by the equipment manufacturer during the EP contract stage and should have formed the basis of the process concept, engineering design and supply for the new plant.

Commissioning of the plant was started in July 2010 and is still ongoing. To date, the plant has not managed to achieve the designed performance levels. The involvement of a consultant at the beginning of the design and specification process would have saved the client from these problems which have since arisen associated with other problems at the plant.

Realising that the project was not reaching its design targets, the client then proceeded to contract PEG to evaluate, as an independent third party, the possible causes of the unstable operation of the new plant 4 months after the start of commissioning. PEG performed the preliminary technical evaluation of the new Cement Plant and issued a report outlining the findings to the Client.

As a result of the preliminary technical evaluation completed by the Consultant the raw material preparation and storage as well as the raw material feed systems to the raw grinding department were identified as the likely root cause of the kiln system production deficiencies at the plant; constant material feed to the kiln system within acceptable product targets & variation noted as being problematic. Within the report PEG presented the client with two alternative raw material preparation and handling systems.

Solution n°1: redesign of clay crushing, decoupling of clay dosing from limestone feeding, while keeping an integrated pre-blending longitudinal stockpile adapted to clay handling,

Solution n°2: redesign of clay crushing, decoupled limestone and clay crushing, independent clay storage and independent clay feed to the raw grinding system.

The objective for the proposed solutions was to utilise, to the greatest extent possible, the current installations at the new plant, whilst ensuring improved material crushing, handling, storage and feeding to the raw grinding mill and correspondingly to ensure a constant and consistent raw meal feed to the kiln system.

Having completed this report and suggested recommendations for improving the situation, PEG S.A. then submitted proposals in how to assist the client further with his problem.

Grinding Capacity increases: Case study

With the gradual return of economic prosperity and an increase in building projects, many cement plant owners now are taking advantage of consultancy expertise with regard to grinding capacity increases in order to satisfy the increased local demand for their products.
Role of Consultants in solving plant efficiency problems through better grinding

As has been previously mentioned, around 60% of the electrical energy used in a cement plant is associated with grinding. This means that due to rising electricity costs, producers are now seeing a significant impact on finances to warrant the implementation of a grinding capacity upgrade to take advantage of varying power costs at different times.

Due to the fact that grinding machinery can easily be started and stopped, it often pays to operate cement mills only during "off-peak" periods when cheaper power is available. This is also favourable for electricity producers, who can negotiate power prices with major users in order to balance their generating capacity over 24 hours. Electricity prices may differ by up to 40% during off peak times, making grinding much cheaper within this off peak tariff.

Clearly though, once the decision is made to grind during off peak hours, it is necessary to increase the cement milling capacity in order to "catch up" after the stop. Because of this, many plants have implemented a grinding capacity upgrade through the use of a roller press or equivalent systems. The implementation of a roller press system can increase the grinding capacity by up to 100%, providing significant options for carrying out the majority of grinding at off peak rates. Furthermore, for many years roller presses have been used for the less precise raw-milling process and it is a well proven technology. However, recently roller presses when used in combination with high-efficiency separators, have been used for cement grinding. The grinding action of the roller press places much greater stress on the material than in a traditional ball mill, and is therefore more efficient. Energy consumption is typically half that of a ball mill.

Alternatively, a grinding capacity may be justified due to increased local demand for cement.

Without needing to increase the clinker production capacity, a cement plant can buy ready made clinker allowing them to grind and increase the amount of cement they can produce without having the investment costs for a kiln capacity increase and all the associated machinery that this entails. This low cost capacity upgrade provides them with the option to quickly respond to demands of the market.

Lastly, in developing countries, many cement plants only currently have the capability to produce pure OPC Types 1&2, 3500 blaine. This type of cement is now gradually being replaced with the higher usage of additive based cements which are cheaper, allowing lower investment costs for large scale infrastructure development projects such as roads. Adding a grinding capacity upgrade increases the options for the cement plant to remain competitive within its local market without the need for huge capital expenditure.

Recently, PEG S.A. provided assistance with initial price investigations from Chinese Suppliers according to a pre-defined scope of work and tender prepared by the client, for a grinding capacity increase project in an existing cement plant located in the Mediterranean basin. PEG S.A. made contact with the relevant Chinese suppliers and provided a proposal for the related scope of works which will be used as a basis for the investment decision and strategic planning of the project.

The consultants role, in this instance, was to provide support for a client with limited knowledge of the Chinese Suppliers. Although Chinese equipment is becoming more widely used within Cement Plants across the world, in some cases there are still uncertainties as to whether the Chinese equipment can "measure up" both in terms of quality and also specification when compared with their European counterparts. Furthermore due to the relative lack of knowledge concerning Chinese equipment within many western plants, a consultant can bring an expert outside opinion, which whilst all cement producers have very competent teams of engineers, may not be available in house.

Conclusion:

The technical and complex nature of cement plants means that independent advice from reputable and competent consultants should be considered very valuable. The use of consultants within cement plant projects of any size gives an advantage to the investor, as demonstrated in the case of the Russian Cement Plant. This is particularly true in cases where adverse conditions are faced. Let it be in the nature of the raw material, ambient temperature fluctuations, or even a simple miscalculation of the required specifications of the plant. Adverse conditions imply that standard equipment cannot be used in these circumstances and very often equipment suppliers are not capable of supplying modified equipment to suit the specified use. It is always more cost effective to design a plant to the exact specifications required in the first instance, than to revisit problems once they arise during the operation of the plant. Consultants are instrumental in this process of design and provide an extra step of technical challenge, discussion and validation for producers right through to implementation of any project.
Maintenance scheduling and spare/wear parts in the cement industry

When fully optimized, a cement plant represents a highly profitable business that can consistently generate impressive returns throughout its lifetime. The ability of a plant to generate consistent profit is reliant on continuous operation which means continuous production time. This is greatly dependent on a regular and meticulously organized maintenance schedule, which, in turn, relies on access to a well organised stock of spare parts. This article will demonstrate the importance of maintenance scheduling and how, in combination with effective inventory management, it can lead to successful plant operation.

Maintenance scheduling or Preventative maintenance can be defined as the schedule of planned maintenance actions aimed at preventing breakdowns and failures. Preventative maintenance involves continuous and frequent checking, monitoring, and evaluation of plant performance. Examples of such activities include equipment checks, partial or complete overhauls at specific periods, vibration and temperature monitoring, oil changes, lubrication and so on. The target of preventative maintenance is to prevent the failure of equipment and to forecast major repairs and upcoming failures as best as possible.

The Value of Preventative Maintenance:

The value of preventative maintenance can be seen in its ability to reduce downtime as preventative maintenance ensures that every scheduled shutdown is optimized and cost effective. This has a direct impact on profit as a plant is less prone to interruptions and can therefore continuously operate.

Benefits of Preventative Maintenance include:

- Improved system reliability
- Decreased replacement cost
- Reduced downtime
- Better spares inventory management / higher availability of necessary spare parts

An effective maintenance schedule has the following items in place:

Maintenance Database
An integral part of effective maintenance is the upkeep of a database that tracks the maintenance work needed to be done. A well kept and up-to-date database will indicate what has to be done, the time needed to do the work, the parts and tools required and the necessary experience to perform the job. This is an important source of information as it provides the maintenance system with the information required to plan and coordinate their operations.

Schedules & Procedures
To optimize each shutdown, schedules and procedures need to be in place. A maintenance schedule is a plan of procedures, designed to achieve an objective, which takes into account the time allotted for each procedure necessary. Effective schedules and procedures are a vital part maintenance scheduling as this makes sure that the priorities are visible, that time is used effectively and progress can be monitored.

Manpower & Tools
To fully optimize plant shutdown a short mobilization time of man power and tools is essential. The right amount of experienced manpower needs to be in place, well trained, and aware of the maintenance priorities. Likewise, the correct tools and parts must be to hand to allow planned actions to take place.
Performance Evaluation
Following a shutdown, performance evaluation should be conducted to identify areas of improvement and forecast future breakdowns. From this, benchmarks can be set which will lead to the development of new procedures and performance targets. The result of this is the development of a highly efficient maintenance system which in the end leads to less downtime.

Effective Inventory Management
The tools and equipment that a plant needs to effectively operate varies from the day to day consumables, the wear parts, the spare parts and the long lead items. It is the management of this inventory that will determine the effectiveness and efficiency of maintenance, downtime and the production process. Ultimately effective inventory management will lead to successful maintenance and lower inventory costs.

A Reliable Source of Equipment Supply
To access replacement equipment it must either be stored on site or be available on site within a rapid delivery time. For some recommended spare parts a well stocked onsite store, coordinated with the maintenance schedule, will provide maintenance teams the inventory they need to keep the plant continuously operating, and in the most cost efficient manner.

However, when sourcing long lead items, which are inefficient to store on site, it is important to consider the time it takes to deliver such items and the cost of investment. For example, if experience states that a part change is required every 10 years, purchasing should occur at least 2 years before that date. This will allow for an optimal delivery time and manufacturing cost. If this forward planning is not adhered to a plant then it runs the risk of breakdowns without the necessary replacement equipment in place. As a result, this could lead to prolonged periods of downtime, which could lead to the bankruptcy of a cement plant or, at best, replacement parts being ordered with additional (and extremely high) emergency costs.

When replacement parts are required, a plant needs a source of supply that will minimize the cost of replacement and deliver the parts when they are needed. However, due to a myriad of constraints, not all cement plants are able to source suppliers or organize and manage transportation on their own. When this is the case, it is beneficial to have a single point of contact that can provide a full service package for equipment supply which, unlike OEMs, is not always from the same source.

Conclusion:
Considering all of the above, it is important for a maintenance system to not only be effective when breakdowns occur but also in anticipating equipment failure, analyzing performance and establishing maintenance schedules. Equally, for a maintenance system to be most effective the required manpower, tools and equipment must be to hand when they are needed. It is also clear that in order to successfully operate a cement plant, an optimized maintenance schedule should be in place, that strikes the balance between continuous production and cost effective maintenance.

To achieve a fully optimized cement plant that is continuously operating, a reliable and experienced service provider that specializes in equipment supply is an important asset to any maintenance system. For many years PEG has been using the German company ENATEC which has been providing cement plants with the equipment supply services required to fully optimize performance and maximize profits.

To discuss your equipment supply needs with a member of the Enatec team please contact info@enatecww.com or visit their website on www.enatecww.com.

Overview of needs for an effective maintenance schedule
• Database of maintenance activities
• Effective maintenance schedules and procedures
• Manpower and tools available
• Mechanisms to evaluate performance
• Well stocked onsite store of equipment
• A reliable source of equipment supply
Waste heat recovery at its best: PEG establishes a new partnership with Green Voltage Ltd.

PEG has recently established a new partnership with the company Green Voltage Ltd (London UK).

If your plant is losing heat and you are not getting any cash back then the Green Voltage partnership is for you! We carry out the studies, we finance your project, we construct it and we can even operate it for you.

Green Voltage's activity consists in producing sustainable electricity for industrial clients at a discount in comparison to the market grid price, using wasted heat flows from its clients' plants and turning them into power by investing into Waste Heat Recovery (WHR) systems. Green Voltage's typical clients lay in the heavy industrial sectors such as cement, steel and non-ferrous metal, with large amounts of waste heat leakages going up to 60% - 80% due to the process.

PEG, as one of the leading independent international cement engineering consultancy, has been chosen to cooperate with Green Voltage. PEG will act as a technical advisor in order to provide independent expertise, global experience and technical sophistication/know-how to Green Voltage. PEG has a proven track record in the delivery of innovative solutions and high performance WHR systems let it be on the engineering and design side but also on the project management and construction/erection of such units.

Green Voltage has chosen the proven Organic Rankine Cycle (ORC) technology, which converts waste heat usually dissipated in the atmosphere into green electricity. The rankine solution enables Green Voltage to be even more performant than the standard WHR systems as the organic fluid it uses requires less energy to convert the lost heat into power.

Green Voltage and PEG are both focused on long term strategies allowing heavy industries to minimize their long term impact on climate change, helping industries such as the cement industry to manage some crucial environmental aspects of their business, while aiming to develop these investments with good governance.

We are sure that this partnership will bring mutual benefits to both parties and for the industry as a whole.

For more information, please do not hesitate to contact us at whr@pegeng.ch. We will gladly answer all your questions and provide you with all the information you need.
PEG Aviation: Facing the British Airways challenge

PEG S.A. will provide soon the unique turn-key A320 family engine maintenance solution to British Airways.

Not less than 12 years ago PEG Aviation supplied its first wide body aircraft maintenance docking system. Since then, and following a number of successfully implemented projects we recently started our current cooperation with British Airways (BA), one of the global leaders in the industry.

For our latest project, working hand in hand with BA, PEG Aviation engineers designed an engine docking system for BA’s A319/A320/A321 aircrafts which will be used at the Glasgow maintenance facility.

In line with PEG’s engineering solution, the maintenance docks will consist of two lightweight aluminum mobile platforms, providing the access to the engines of the aircraft on wheels or on jacks. Additionally, sliding panels covering the entire length of the engines will be provided. This will allow more flexibility and accessibility to the areas to be maintained or repaired.

When the platforms are installed around the engine the technicians will be able go from one platform to the other using the access in the frontal parts of the platforms.

Each of the two platforms will be equipped with a sliding ladder providing access to the engine pylon. The ladder can be moved around the platform and along the engine. This ladder is designed for one person to sit on top while performing repair or inspection of the pylon. When it is not in use, it can be parked on the front side of the platform to enable the opening of the engine cowling. The working platform has plug-in railings with kick plates fabricated and installed according to EU safety norms.

The fabrication and supply of the system was arranged through a German supplier delivering high craftsmanship and quality at competitive pricing.

The engine docks should be delivered within the next few weeks.
Company news

Development of the PEG Group

The PEG Group is expanding its worldwide presence with the establishment of new local offices namely PEG Tchad, PEG Indonesia and PEG Construction, with the aim to offer its services at the doorstep of investors. The PEG Group now consists of more than 150 people divided between these 8 companies.

PEG S.A. recently launched its new user-friendly website

PEG S.A. has introduced his new website focused on ease of navigation. The functionality has been improved and a complete information is provided to the visitors. They can download documentations, from our references to our newsletters and can see the latest job offers. New easily accessible icons on the footer allow the visitor to access the other websites of the PEG Group. The new PEG SEA website, design on the same model, will be accessible shortly. The other websites will also be redesigned and put online by the end of the year. We apologize for the sites which are temporarily unavailable.
38.9 years of valiant services by Mr. Louis Genthon

Last December, Mr. Louis Genthon retired in his 39th years of working for PEG as a Procurement Specialist, Mechanical Engineer and Project Manager. Therefore this was a fabulous occasion for us to organize a farewell drink in his honor, and to invite former colleagues with whom he had worked with throughout his career. A speech, prepared by Mr. Delvaux, recalled this successful career at PEG which started on March 1st 1973, a year where several of PEG’s now Senior Engineers were engaged to consolidate the team in order to face many projects and answer our clients’ needs.

During his time, Louis Genthon was involved in many projects in the fields of cement, coal grinding, indirect burner feeding, new projects, restorations, upgrades and modernization of existing cement plants.

Louis started by working on the design review from 1973 to 1975 for the Haiti cement plant. Then, he was detached from the office for a year to take up the position as PEG Site Administrative Assistant in Hawari (Libya), taking care of the housing and transport facilities for PEG staff, as well as treasury, mail, writing progress reports and carrying out administrative formalities on behalf of and in support of the customer. He also followed the equipment assembly works as well as commissioning.

Since then, Louis worked all throughout the world starting with Algeria for 2 years at the Beni Saf Cement plant, followed by many other plants such as SKC in Saudi Arabia, CIDOLOU in Congo, Diamante in Colombia, Bacnotan Cement, Davao Cement, Phinma Group, Republic Cement, and much more.

In the environmental field, he also worked on important projects such as the drying sewage sludge at the Roche plant in Switzerland and the famous CADIOM project in Geneva for the recovery of lost heat produced by the incineration of household waste. The CADIOM project provides distance heating for 22'000 inhabitants. Lastly, Louis was instrumental in the management and successful completion of the project related to the pumping of sewage sludge to the Cheneviers plant in Geneva.

Since Mr. Genthon’s departure, another retirement was celebrated at PEG last April.

Gaston Voeffray was part of the same wave of recruitment as Louis Genthon and started to work for PEG in 1972 as a Civil Engineer.

He mostly worked on cement projects, alternating work in the office with work on site. During the first years, Gaston mainly collaborated to the rebuilding of the Fond Mombin cement plant located in Haiti.

But Gaston’s contribution to the company’s activity did not solely consist in cement projects. In 1981, Gaston was detached in Algeria to manage civil engineering during the construction of five industrial carpentries. Moreover, such as Louis, he has also collaborated on the environmental projects of upgrading of the waste incineration plant of Cheneviers and the district heating “CADIOM”.

Today, to our great pleasure, Gaston has decided to continue his collaboration with PEG after his retirement and will work as a freelance and from time to time.

All the people who have collaborated with Louis throughout the years unanimously speak of him as a dedicated and passionate person that has always served PEG in the best possible way. His experience and know-how have been essential and it is with an extreme gratitude that the PEG team wishes him a happy retirement.

Gaston receiving his PEGLEX watch from the hands of CEO Marc Lambert
Company news

PEG current and former employees gather around Gaston

New comers!

PEG welcomes the new Projects Director Mr. Peter Anderson. Peter has completed large scale cement projects all over the world and used to work for the leader in cement manufacturing industry. Peter will be bringing to our clients an operational viewpoint as well as developing a new offer for high alumina cements.

Mr. Hervé de Ruffray, new Head of the Infrastructure Department, joined PEG April 2012. Hervé has an extensive experience in project management in the field of roads and motorways infrastructure. He used to manage the maintenance of dynamic equipment services for a French motorway company.

Mr. David Dumar, Electro-Mechanical Draftman joined PEG May 2012 in order to reinforce and bring his support to the infrastructure team in the achievement of important projects in the frame of contracts between PEG and the OFROU or the Geneva International Airport.

Dates to remember:

SEPTEMBER

Cemtech Europe 2012

23-26 September

Geneva, Switzerland

Stand 16

DECEMBER

AUCBM’s 17th Arab International Cement Conference

17-19th December in Dubai, UAE

Stand C-23

PEG LOTTERY

Present this coupon at the PEG booth during the Cemtech Europe 2012 Conference and get a chance to win prizes*!

Visit us at our booth no. 16!

Cemtech Europe 2012 - Geneva, 23-26 September 2012

*Only one participation per person is allowed.
As an ever expanding company, we constantly have new opportunities for experienced engineers to become part of our team. Our projects are spread over 5 continents. We currently have the following positions available:

Site Resident ENGINEERS : Civil, Mechanical, Electrical
You will be responsible for the supervision of the work on site and be the main contact of the client and the subcontractors.

Senior Civil Engineer
You should be capable to perform the design work such as concept, quantity estimation, feasibility study, specifications & contracting, detail design and remote control/checking of drawing preparation, structure calculation, office support during construction stage and enclosure of the project in the whole life cycle of turnkey projects.

Expert in AFR / Refuse dump organization and establishment
PEG is looking for someone with experience in the field of recycling and/or waste preparation and in design of waste preparation plants (ability to judge different technical solutions for waste preparation plants).

Assistant Cost Control
You should be capable to develop and optimize the cost control on an international level. Tasks will consist of: reporting, consolidate the annual budget, analyze results, forecasts, etc.

Electrical Automation Engineer for our infrastructure department
You will integrate the team by taking part in multi-field projects in the fields of the road infrastructure, energy, airports, car parks, industrial buildings, maintenance, etc. You will be in charge of the design and follow up of realization and you will bring support for the manager of the project.

For a complete profile overview and information about our application procedure, please visit our website

www.pegeng.ch/about/careers